Friday, October 24, 2008

Type Network

Below is a list of the most common types of computer networks in order of scale.

Personal Area Network (PAN)

A personal area network (PAN) is a computer network used for communication among computer devices close to one person. Some examples of devices that are used in a PAN are printers, fax machines, telephones, PDAs and scanners. The reach of a PAN is typically about 20-30 feet (approximately 6-9 meters), but this is expected to increase with technology improvements.

Personal area networks may be wired with computer buses such as USB and FireWire. A wireless personal area network (WPAN) can also be made possible with network technologies such as IrDA and Bluetooth.

Local Area Network (LAN)

This is a network covering a small geographic area, like a home, office, or building. Current LANs are most likely to be based on Ethernet technology. For example, a library may have a wired or wireless LAN for users to interconnect local devices (e.g., printers and servers) and to connect to the internet. On a wired LAN, PCs in the library are typically connected by category 5 (Cat5) cable, running the IEEE 802.3 protocol through a system of interconnected devices and eventually connect to the Internet. The cables to the servers are typically on Cat 5e enhanced cable, which will support IEEE 802.3 at 1 Gbit/s. A wireless LAN may exist using a different IEEE protocol, 802.11b, 802.11g or possibly 802.11n. The staff computers (bright green in the figure) can get to the color printer, checkout records, and the academic network and the Internet. All user computers can get to the Internet and the card catalog. Each workgroup can get to its local printer. Note that the printers are not accessible from outside their workgroup.

All interconnected devices must understand the network layer (layer 3), because they are handling multiple subnets (the different colors). Those inside the library, which have only 10/100 Mbit/s Ethernet connections to the user device and a Gigabit Ethernet connection to the central router, could be called "layer 3 switches" because they only have Ethernet interfaces and must understand IP. It would be more correct to call them access routers, where the router at the top is a distribution router that connects to the Internet and academic networks' customer access routers.

The defining characteristics of LANs, in contrast to WANs (wide area networks), include their higher data transfer rates, smaller geographic range, and lack of a need for leased telecommunication lines. Current Ethernet or other IEEE 802.3 LAN technologies operate at speeds up to 10 Gbit/s. This is the data transfer rate. IEEE has projects investigating the standardization of 100 Gbit/s, and possibly 40 Gbit/s.

Campus Area Network (CAN)

This is a network that connects two or more LANs but that is limited to a specific and contiguous geographical area such as a college campus, industrial complex, office building, or a military base. A CAN may be considered a type of MAN (metropolitan area network), but is generally limited to a smaller area than a typical MAN. This term is most often used to discuss the implementation of networks for a contiguous area. This should not be confused with a Controller Area Network. A LAN connects network devices over a relatively short distance. A networked office building, school, or home usually contains a single LAN, though sometimes one building will contain a few small LANs (perhaps one per room), and occasionally a LAN will span a group of nearby buildings. In TCP/IP networking, a LAN is often but not always implemented as a single IP subnet.

Metropolitan Area Network (MAN)

A Metropolitan Area Network is a network that connects two or more Local Area Networks or Campus Area Networks together but does not extend beyond the boundaries of the immediate town/city. Routers, switches and hubs are connected to create a Metropolitan Area Network.

Wide Area Network (WAN)

A WAN is a data communications network that covers a relatively broad geographic area (i.e. one city to another and one country to another country) and that often uses transmission facilities provided by common carriers, such as telephone companies. WAN technologies generally funcRemove Formatting from selectiontion at the lower three layers of the OSI reference model: the physical layer, the data link layer, and the network layer.

Global Area Network (GAN)

Global Area networks (GAN) specifications are in development by several groups, and there is no common definition. In general, however, a GAN is a model for supporting mobile communications across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is "handing off" the user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial Wireless local area networks (WLAN).


Two or more networks or network segments connected using devices that operate at layer 3 (the 'network' layer) of the OSI Basic Reference Model, such as a router. Any interconnection among or between public, private, commercial, industrial, or governmental networks may also be defined as an internetwork.

In modern practice, the interconnected networks use the Internet Protocol. There are at least three variants of internetwork, depending on who administers and who participates in them:

  • Intranet
  • Extranet
  • Internet

Intranets and extranets may or may not have connections to the Internet. If connected to the Internet, the intranet or extranet is normally protected from being accessed from the Internet without proper authorization. The Internet is not considered to be a part of the intranet or extranet, although it may serve as a portal for access to portions of an extranet.


An intranet is a set of networks, using the Internet Protocol and IP-based tools such as web browsers and file transfer applications, that is under the control of a single administrative entity. That administrative entity closes the intranet to all but specific, authorized users. Most commonly, an intranet is the internal network of an organization. A large intranet will typically have at least one web server to provide users with organizational information.


An extranet is a network or internetwork that is limited in scope to a single organization or entity but which also has limited connections to the networks of one or more other usually, but not necessarily, trusted organizations or entities (e.g. a company's customers may be given access to some part of its intranet creating in this way an extranet, while at the same time the customers may not be considered 'trusted' from a security standpoint). Technically, an extranet may also be categorized as a CAN, MAN, WAN, or other type of network, although, by definition, an extranet cannot consist of a single LAN; it must have at least one connection with an external network.


The Internet is a specific internetwork. It consists of a worldwide interconnection of governmental, academic, public, and private networks based upon the networking technologies of the Internet Protocol Suite. It is the successor of the Advanced Research Projects Agency Network (ARPANET) developed by DARPA of the U.S. Department of Defense. The Internet is also the communications backbone underlying the World Wide Web (WWW). The 'Internet' is most commonly spelled with a capital 'I' as a proper noun, for historical reasons and to distinguish it from other generic internetworks.

Participants in the Internet use a diverse array of methods of several hundred documented, and often standardized, protocols compatible with the Internet Protocol Suite and an addressing system (IP Addresses) administered by the Internet Assigned Numbers Authority and address registries. Service providers and large enterprises exchange information about the reachability of their address spaces through the [Border Gateway Protocol] (BGP), forming a redundent worldwide mesh of transmission paths.

Object Oriented Programming(OOP)

Fundamental concepts OOP, found in the strong majority of definitions of OOP. They are the following:

Defines the abstract characteristics of a thing (object), including the thing's characteristics (its attributes, fields or properties) and the thing's behaviors (the things it can do, or methods, operations or features). One might say that a class is a blueprint or factory that describes the nature of something. For example, the class Dog would consist of traits shared by all dogs, such as breed and fur color (characteristics), and the ability to bark and sit (behaviors). Classes provide modularity and structure in an object-oriented computer program. A class should typically be recognizable to a non-programmer familiar with the problem domain, meaning that the characteristics of the class should make sense in context. Also, the code for a class should be relatively self-contained (generally using encapsulation).members. Collectively, the properties and methods defined by a class are called
A pattern (exemplar) of a class. The class of Dog defines all possible dogs by listing the characteristics and behaviors they can have; the object Lassie is one particular dog, with particular versions of the characteristics. A Dog has fur; Lassie has brown-and-white fur.
One can have an instance of a class or a particular object. The instance is the actual object created at runtime. In programmer jargon, the Lassie object is an instance of the Dog class. The set of values of the attributes of a particular object is called its state. The object consists of state and the behaviour that's defined in the object's class.
An object's abilities. In language, methods are verbs. Lassie, being a Dog, has the ability to bark. So bark() is one of Lassie's methods. She may have other methods as well, for example sit() or eat() or walk() or save_timmy(). Within the program, using a method usually affects only one particular object; all Dogs can bark, but you need only one particular dog to do the barking.
Message passing
“The process by which an object sends data to another object or asks the other object to invoke a method.” Also known to some programming languages as interfacing. E.g. the object called Breeder may tell the Lassie object to sit by passing a 'sit' message which invokes Lassie's 'sit' method. The syntax varies between languages, for example: [Lassie sit] in Objective-C. In Java code-level message passing corresponds to "method calling". Some dynamic languages use double-dispatch or multi-dispatch to find and pass messages.
‘Subclasses’ are more specialized versions of a class, which inherit attributes and behaviors from their parent classes, and can introduce their own.
For example, the class Dog might have sub-classes called Collie, Chihuahua, and GoldenRetriever. In this case, Lassie would be an instance of the Collie subclass. Suppose the Dog class defines a method called bark() and a property called furColor. Each of its sub-classes (Collie, Chihuahua, and GoldenRetriever) will inherit these members, meaning that the programmer only needs to write the code for them once.
Each subclass can alter its inherited traits. For example, the Collie class might specify that the default furColor for a collie is brown-and-white. The Chihuahua subclass might specify that the bark() method produces a high pitch by default. Subclasses can also add new members. The Chihuahua subclass could add a method called tremble(). So an individual chihuahua instance would use a high-pitched bark() from the Chihuahua subclass, which in turn inherited the usual bark() from Dog. The chihuahua object would also have the tremble() method, but Lassie would not, because she is a Collie, not a Chihuahua. In fact, inheritance is an ‘is-a’ relationship: Lassie is aCollie. A Collie is a Dog. Thus, Lassie inherits the methods of both Collies and Dogs.
Multiple inheritance is inheritance from more than one ancestor class, neither of these ancestors being an ancestor of the other. For example, independent classes could define Dogs and Cats, and a Chimera object could be created from these two which inherits all the (multiple) behavior of cats and dogs. This is not always supported, as it can be hard both to implement and to use well.
Abstraction is simplifying complex reality by modelling classes appropriate to the problem, and working at the most appropriate level of inheritance for a given aspect of the problem.
For example, Lassie the Dog may be treated as a Dog much of the time, a Collie when necessary to access Collie-specific attributes or behaviors, and as an Animal (perhaps the parent class of Dog) when counting Timmy's pets.
Abstraction is also achieved through Composition. For example, a class Car would be made up of an Engine, Gearbox, Steering objects, and many more components. To build the Car class, one does not need to know how the different components work internally, but only how to interface with them, i.e., send messages to them, receive messages from them, and perhaps make the different objects composing the class interact with each other.
Encapsulation conceals the functional details of a class from objects that send messages to it.
For example, the Dog class has a bark() method. The code for the bark() method defines exactly how a bark happens (e.g., by inhale() and then exhale(), at a particular pitch and volume). Timmy, Lassie's friend, however, does not need to know exactly how she barks. Encapsulation is achieved by specifying which classes may use the members of an object. The result is that each object exposes to any class a certain interface — those members accessible to that class. The reason for encapsulation is to prevent clients of an interface from depending on those parts of the implementation that are likely to change in future, thereby allowing those changes to be made more easily, that is, without changes to clients. For example, an interface can ensure that puppies can only be added to an object of the class Dog by code in that class. Members are often specified as public, protected or private, determining whether they are available to all classes, sub-classes or only the defining class. Some languages go further: Java uses the default access modifier to restrict access also to classes in the same package, C# and VB.NET reserve some members to classes in the same assembly using keywords internal (C#) or Friend (VB.NET), and Eiffel and C++ allow one to specify which classes may access any member.
Polymorphism allows the programmer to treat derived class members just like their parent class' members. More precisely, Polymorphism in object-oriented programmingobjects belonging to different data types to respond to method calls of methods of the same name, each one according to an appropriate type-specific behavior. One method, or an operator such as +, -, or *, can be abstractly applied in many different situations. If a Dog is commanded to speak(), this may elicit a bark(). However, if a Pig is commanded to speak(), this may elicit an oink(). They both inherit speak() from Animal, but their derived class methods override the methods of the parent class; this is Overriding Polymorphism. Overloading Polymorphism is the use of one method signature, or one operator such as ‘+’, to perform several different functions depending on the implementation. The ‘+’ operator, for example, may be used to perform integer addition, float addition, list concatenation, or string concatenation. Any two subclasses of Number, such as Integer and Double, are expected to add together properly in an OOP language. The language must therefore overload the concatenation operator, ‘+’, to work this way. This helps improve code readability. How this is implemented varies from language to language, but most OOP languages support at least some level of overloading polymorphism. Many OOP languages also support Parametric Polymorphism, where code is written without mention of any specific type and thus can be used transparently with any number of new types. Pointers are an example of a simple polymorphic routine that can be used with many different types of objects. is the ability of
Decoupling allows for the separation of object interactions from classes and inheritance into distinct layers of abstraction. A common use of decoupling is to polymorphically decouple the encapsulation, which is the practice of using reusable code to prevent discrete code modules from interacting with each other.

Not all of the above concepts are to be found in all object-oriented programming languages, and so object-oriented programming that uses classes is called sometimesclass-based programming. In particular, prototype-based programming does not typically use classes. As a result, a significantly different yet analogous terminology is used to define the concepts of object and instance, although there are no objects in these languages.

Wednesday, October 22, 2008

Anti Virus Gadungan

Jika anda menanyakan, virus apa yang merajai dunia dan Indonesia pada paruh tahun ke dua 2008. Jangan terkejut jika jawabannya adalah kuda hitam Antivirus Gadungan yang banyak disebut dengan istilah Rogue Scanner, Advance Antivirus atau Scamware. Jika anda bingung apa yang Vaksincom bicarakan, bahasa yang lebih membumi dan membuat pengguna komputer sadar adalah Antivirus XP 2008, Antivirus XP 2009, IE Defender, Internet Antivirus, SpyHeal, SpySheriff yang kalau diteruskan daftarnya akan cukup membuat pegal baik mengetik maupun membacanya.

Jumlah Antivirus Gadungan saat ini yang terdeteksi adalah 304 antivirus gadungan. Data yang dikumpulkan statistik virus Vaksincom didukung data statistik Norman Network Protector (NNP) yang di instal di beberapa ISP mengkonfirmasikan hal ini. Dapat dipastikan ribuan komputer di Indonesia yang terkoneksi ke internet terinfeksi virus ini dan celakanya virus ini memiliki genetik Spyware dan memiliki kemampuan mengupdate dirinya sendiri, sehingga untuk membersihkannya membutuhkan perjuangan berat dan beberapa user yang kesal memilih jurus Pasopati (format :P).

Antivirus Gadungan ini memiliki banyak cara menyebarkan dirinya, menurut pengamatan Vaksincom metode ini selalu diperbaharui setiap kali ditemukan cara efektif mengatasinya. Adapun metode yang umum digunakan adalah sebagai berikut :

  • Mengeksploitasi celah keamanan (Java Script) browser waktu mengunjungi website tertentu sehingga akan terinstal secara otomatis dan menampilkan peringatan palsu.

  • Menawarkan scan malware gratis atau tune up sistem komputer gratis.

  • Email, dalam hal eksploitasi email pembuat virus ini cukup kreatif.